Abstract

Free-living amoebae belonging to the genus Acanthamoeba are microorganisms that live in air, soil and aquatic environments. In humans, they cause infections such as amoebic keratitis, graulamotous amoebic encephalitis that are difficult to treat and can be fatal. In addition, it is known that they contribute to the replication of bacteria and increase their pathogenicity by being a host for various bacteria. However, information on its inhibitory properties against bacteria and its production of antimicrobial agents is very limited. In this context, in this study, it was aimed to investigate whether cell-free supernatants of Acanthamoeba strains have antibacterial effects against Pseudomonas aeruginosa isolates. Four different Acanthamoeba strains (A10, A13, A14, U.GÖL) isolated from aquatic environments in our country were selected and used in the study, P.aeruginosa isolates (PA2, PA3, PA4, PA5) were selected from clinical strains belonging to patients in our country. Acanthamoeba castellanii ATCC 50373 and P.aeruginosa ATCC 27853 were used as standard strains. P.aeruginosa isolates were grown on nutrient agar at 37 °C and Acanthamoeba strains were grown on E.coli spread non-nutrient agar at 30 °C under aerobic conditions. Pepton yeast extract glucose (PYG) medium supplemented with penicillin and streptomycin was used to obtain axenic cultures of Acanthamoeba strains. After the centrifugation of axenic cultures at 3000 rpm for five minutes, Acanthamoeba-cell-free supernatants were obtained by filtering the supernatant part through a sterile filter with a pore diameter of 0.22 µm. The antibacterial activities of these supernatants against P.aeruginosa isolates were determined using the colony counting method. Analysis of each Acanthamoeba-cell-free supernatants was performed according to the GC-MS method. Acanthamoeba-cell-free supernatants were found to have varying degrees of inhibitory effects (3.9-91.5%) against tested P.aeruginosa isolates. It was determined that the cell-free supernatant of A.castellanii ATCC 50373 strain showed the highest antibacterial effect (91.5%) against PA5 isolate. A14 strain showed similar inhibitory effects (89.4%) against the same Pseudomonas isolate. The average inhibitory effect of most of the Acanthamoeba strains of our country was found to be higher than that of the reference strain A.castellanii ATCC 50492. It is thought that the compounds responsible for the anti-Pseudomonas activity of the tested Acanthamoeba strains may be fructose, phosphoric acid, galactose, N-Acetylphenylalanine and glucopyranose determined as major compounds. This is the first study showing the anti-Pseudomonas activity of microorganisms of the genus Acanthamoeba living in the waters of our country. Acanthamoeba, which is widely found in nature, appears to be a good source for new antimicrobial agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call