Abstract

Utilizing pulsed lasers in favor of a continuous wave in laser beam welding is a well-established method to achieve higher process efficiency and reduce heat input into the workpiece, which is especially useful for thin-walled workpieces (Steen, 2005). In addition, pulsed processes have shown to lead to smaller grain sizes due to higher cooling rates, which can lead to a reduction in hot cracks in some aluminum alloys (Beiranvand et al., 2019). Since an electron beam can also be pulsed, a technique industrially utilized in electron beam drilling, the same principles apply (Schultz, 2000). However, pulsed electron beam welding is rarely used in industrial welding applications due to the risk of pores, spiking and sputtering resulting from the pulsed process dynamic, especially in the deep welding regime (Kautz, 1991). This study aims to develop a pulsed electron beam welding process for AW 6061 sheet metal, which is susceptible to hot cracking. The influence of the welding and pulse parameters, as well as the combination of a pulsed beam with high frequency beam oscillation is discussed. Furthermore, suitable welding parameters for pulsed electron beam welding of AW 6061 are developed, and the increased efficiency of pulsed welding is shown by comparison to continuous welds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call