Abstract
The main methods of improving the performance of granular thermal insulationmaterials based on liquid glass are chemical methods of their modification, which are based onchanging their structure through the use of special ingredients. At the same time, there is a need to introduce often a large number of components and individual technological operations, which is notalways technological. One of the promising methods of changing the physical state of substancesunder the action of an electromagnetic field is non-thermal treatment of microwave radiation. Theadvantages of using microwave radiation in comparison with the generally accepted methods ofmodification of materials are the transformation of their structure without significant changes in thetechnological process and the need to use additional components. Due to volumetric heating and themechanism of non-thermal action of microwave radiation on processing objects the duration of theirheating considerably decreases. When microwave heating of a liquid glass composition part of theenergy of electromagnetic radiation is converted into heat, which contributes to the intense swellingof the material, and the other part is aimed at structural changes in the material, which improve itsproperties due to the non-thermal effect of microwave radiation. Studies show that the best set ofperformance properties have granular materials obtained under the action of microwave radiationat a power of 650 W, which corresponds to a temperature of 110-120 0C. The required duration ofsuch heat treatment is 6-7 minutes. The closest to them in terms of coefficient of swelling are materialsobtained by convective heating at a temperature of 200 0C for 1 hour, but their physical andmechanical properties are much lower. Thus, it can be noted that the use of microwave radiationallows to obtain granular thermal insulation materials with a better set of performance properties atlower energy costs for their production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Collected scientific works of Ukrainian State University of Railway Transport
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.