Abstract

This paper outlines the results of an experimental study of the influence of high hydrostatic pressure on the abrasive wear of hard-alloy materials based on tungsten carbide (~90% WC ± 10% Co), as well as alloys based on iron with high contents of chromium. A specially developed setup has been described in the paper that makes it possible to test materials under the hydrostatic pressure of up to 250 MPa at different friction speeds. An investigation of the surfaces of samples using the Scanning Electron Microscopy method has revealed that the main damage of alloy surface occurs due to the delamination and spalling of hard particles. It has been revealed that the hydrostatic pressure significantly influences the wear rate of the investigated materials. When the pressure increases to 200 MPa, the wear of materials with high contents of chromium increases seven times, while for the material based on tungsten carbide, it increases twice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.