Abstract

The filling of the electrolyte and the subsequent wetting of the electrodes is a quality-critical and time-intensive process in manufacturing of lithium-ion batteries. The exact influencing factors are the subject of research through experiments and simulation tools. Previous studies have demonstrated that wetting occurs mainly in the transition between the materials but leads to gas entrapments. Therefore, this paper investigates the influence of the electrode surface structures, situated between anode and separator, on the wetting progress, through experimental capillary wetting and simulated with a lattice Boltzmann simulation. The results show that the simulations can identify the exact pore size distribution and determine the wetting rates of the entire materials. Furthermore, the experiments reveal a negative correlation between fast wetting and rougher surface properties. This enables a more precise determination of the wetting phenomena in lithium-ion cell manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.