Abstract

In order to design Cu-Sn alloys with excellent overall performance, the structural stability, mechanical properties, and electronic structure of X-doped Cu-Sn alloys were systematically calculated using first-principles calculations. The calculation results of the cohesive energy indicate that the Cu-Sn-X structures formed by X atoms (X = Ag, Ca, Cd, Mg, Ni, Zr) doping into Cu-Sn can stably exist. The Cu-Sn-Ni structure is the most stable, with a cohesive energy value of −3.84 eV. Doping of X atoms leads to a decrease in the bulk modulus, Possion’s ratio and B/G ratio. However, doping Ag and Ni atoms can improve the shear modulus, Young’s modulus, and strain energy of the dislocation. The doping of Ni has the highest enhancement on shear modulus, Young’s modulus, and strain energy of the dislocation, with respective values as follows: 63.085 GPa, 163.593 GPa, and 1.689 W/J·m−1. The analysis of electronic structure results shows that the covalent bond between Cu and X is the reason for the performance differences in Cu-Sn-X structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call