Abstract

Techniques to estimate semivariogram parameters are investigated with respect to assessing the effects of sparse data and detecting the presence of a trend. These techniques are applied to the determination of semivariogram parameters used in the estimation of hydraulic head values at node locations from measured head data. The presence of no-flow boundaries is included in the estimation of hydraulic heads at node values by applying constraints to the head gradient across the no-flow boundaries. The resulting hydraulic head estimates are used in an inverse groundwater flow model to assess the impact of the no-flow boundary constraints on transmissivities determined from the inverse model. It is found in a case study that when gradients in the prior head distribution do not match assumed no-flow boundaries, the inverse model can produce low transmissivity values along these no-flow boundaries. Prior heads estimated with constraints on the head gradient across no-flow boundaries did not produce the low transmissivity values along no-flow boundaries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call