Abstract

AbstractThis paper introduces a technique aimed at improving the performance of an interior permanent magnet synchronous machine (IPMSM) by reducing torque ripple and radial force harmonics. Unlike conventional IPMSMs, the proposed method employs a variable airgap length that is defined by a mathematical function. Two distinct rotor shapes are investigated to determine the most efficient design. Finite Element Analysis is employed to assess both the electromagnetic and mechanical attributes of the proposed motors. It compares the results for three operating points of the shaped motor with those of a conventional one. The investigation delves into the influence of rotor geometry on key output parameters, including Back Electromotive Force (back‐EMF) harmonics, average torque, cogging torque, torque ripple, efficiency, power factor, and radial force harmonics. The findings indicate that optimising rotor shape can significantly enhance IPMSM performance by reducing torque ripples and radial force harmonics, while simultaneously increasing average torque and efficiency at different operating points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.