Abstract
Engine injection strategy and renewable fuel both can improve nitrogen oxides (NOX) and smoke/soot emissions in a common-rail compression ignition (CI) diesel engine. The effects of different postinjection (PI) timings (15, 30, and 45) after top dead center (aTDC) and injection pressures (550 and 650 bar) on pollutant emissions and smoke/soot emissions were investigated for combustion of a renewable fuel (soybean biodiesel). The results showed that the levels of carbon monoxide (CO), hydrocarbons (HCs), and NOX are reduced from the combustion of soybean biodiesel compared to the diesel fuel combustion for different injection strategy. Besides, NOX emission is clearly reduced with retarded PI timing, especially at 45°. It is found that the increasing injection pressure reduced gaseous emissions for both fuels. The combination between biodiesel fuel and injection strategy can provide meaningful improvements in pollutant emissions, as well as enhance the exhaust temperature compared to the diesel fuel. With biodiesel fueling, smoke/soot emissions were reduced from biodiesel combustion (by 19.7%) under different fuel injection timings and pressures rather than from the diesel fuel combustion (by 12.2%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.