Abstract

Fossil fuel is a non-renewable fuel, and with the development of modern industry and agriculture, the storage capacity of fossil fuels is constantly decreasing. In this study, a systematic study and analysis were conducted on the combustion characteristics, engine performance, and exhaust emission characteristics of castor biodiesel–diesel blends and pure diesel fuel in different proportions at different speeds of a single-cylinder four-stroke diesel engine under constant load. The castor biodiesel required for the experiment is generated through an ester exchange reaction and mixed with diesel in proportion to produce biodiesel–diesel blends. The experimental results show that as an oxygenated fuel with a higher cetane number, the CO, HC, and smoke emissions of diesel and B80 blend fuel at 1800 rpm were reduced by 16.9%, 31.6%, and 68%, respectively. On the contrary, the NOx and CO2 emissions increased by 17.3% and 34.6% compared to diesel at 1800 rpm. In addition, due to its high viscosity and low calorific value, the brake thermal efficiency and brake-specific fuel consumption of the biodiesel–diesel blends are slightly lower than those of diesel, but the biodiesel–diesel blends exhibit lower exhaust gas temperatures. Comparing B80 and diesel fuel at 1800 rpm, the BSFC of diesel at 1800 rpm is 3.12 kg/W·h, whereas for B80 blended fuel, it increases to 4.2 kg/W·h, and BTE decreases from 25.39% to 21.33%. On the contrary, B60 blended fuel exhibits a lower exhaust emission temperature, displaying 452 °C at 1800 rpm. Based on the experimental results, it can be concluded that castor biodiesel is a very promising clean alternative fuel with low waste emissions and good engine performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call