Abstract

Underwater gliders have emerged as effective tools for long-term ocean exploration. Employing aircraft for launching underwater gliders could significantly expand their application. Compared to slender underwater vehicles, the distinctive wing structure of underwater gliders may endure huge impact forces when entering water, leading to more intricate impact load characteristics and potential wing damage. This paper employs a computational fluid dynamics approach to analyze the water entry event of an airdropped underwater glider and its impact load behavior. The results indicate that the glider impact load is enhanced prominently by the wing, and that the extent of enhancement is influenced by the entry attitude. At an entry angle of 80°, the glider exhibits the maximum impact load during different water entry angles. In addition, a larger attack angle indicates a higher glider impact load. Our present study holds significant importance for both the hydrodynamic shape design and water entry strategy control of airdropped underwater gliders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.