Abstract

We report on the hygroscopic growth of self-assembled lamellae, composed of N-alkyl-N-methylpyrrolidinium bromide (CnMPB; n = 10, 12, 14, 16, 18) surfactant molecules, spontaneously formed at the interface between ambient air and the low-melting organic salt tetrabutylammonium acetate (TBAAc). The organization process to form well-defined hygroscopic bilayer patterns at the air/TBAAc interface was investigated using a combination of time-dependent X-ray diffraction (XRD) and carbon-13 cross-polarization magic angle spinning nuclear magnetic resonance (13C CP/MAS NMR) spectroscopy. CnMPB surfactants containing the highest alkyl chain lengths studied (n = 16, 18) formed highly ordered, fully interdigitated bilayer patterns with an all-trans conformation of interior methylene carbons. In contrast, CnMPB surfactants with shorter alkane chains (n = 10, 12, 14) in this series formed less-ordered bilayer arrangements with mixed trans/gauche aliphatic character. The lamellar patterns became increasingly ordered with longer exposure to humid air at the air/salt interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.