Abstract

ObjectiveThe interplay of gut microbiota with the kidney system in chronic kidney disease (CKD), is characterized by increased concentrations of uric acid in the gut, which in turn, may increase bacterial uricase activity and may lead to the generation of uremic toxins. Nevertheless, knowledge on these underlying bidirectional molecular mechanisms is still limited. MethodsIn this exploratory study, proteomic analysis was performed on fecal samples, targeting to investigate this largely unexplored biological material as a source of information reflecting the gut-kidney axis. Specifically, fecal suspension samples from patients with CKD1 (n = 12) and CKD4 (n = 17) were analysed by LC-MS/MS, using both the Human and Bacterial UniProt RefSeq reviewed databases. ResultsThis fecal proteomic analysis collectively identified 701 human and 1011 bacterial proteins of high confidence. Differential expression analysis (CKD4/CKD1) revealed significant changes in human proteins (n = 8, including proteins such as galectin-3-binding protein and prolactin-inducible protein), that were found to be associated with inflammation and CKD. The differential protein expression of pancreatic alpha-amylase further suggested plausible reduced saccharolytic fermentation in CKD4/CKD1. Significant changes in bacterial proteins (n = 9, such as glyceraldehyde-3-phosphate dehydrogenase and enolase), participating in various carbohydrate and metabolic pathways important for the synthesis of butyrate, in turn suggested differential butyrate synthesis in CKD4/CKD1. Further, targeted quantification of fecal pancreatic alpha-amylase and butyrate in the same fecal suspension samples, supported these hypotheses. ConclusionCollectively, this exploratory fecal proteomic analysis highlighted changes in human and bacterial proteins reflecting inflammation and reduced saccharolytic fermentation in CKD4/CKD1, plausibly affecting the butyrate synthesis pathways in advanced stage kidney disease. Integrative multi-omics validation is planned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.