Abstract

Horizontal collisions between fruit and rigid walls are a common occurrence in postharvest packaging and transportation. To address this issue, a novel high-precision instrumented impactor was developed, comprising a high-speed imaging system, an ejection device, and a force sensor. Results showed that the impactor was able to effectively simulate the horizontal collision process between various small spherical fruits (such as cherry tomatoes, plums, sweet cherries, and winter jujubes) and packaging materials at three velocities: slow, medium, and high. Output parameters included the impact force and impact time of the fruit acting on each packaging material, as well as the displacement, displacement rate, impact energy, rebound energy, and absorption energy of the fruit. During the horizontal collision simulation, it was observed that the winter jujube exhibited the largest impact force and the shortest impact time among the four types of fruit tested. Conversely, the sweet cherry demonstrated the lowest proportion of damage area when colliding with the EPE board compared to the rigid board and foam board. This study presents a powerful tool for investigating the horizontal collision behaviour between fruit and rigid plates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.