Abstract

An apparatus was constructed to disperse a fine powder in a flowing gas and measure the thermal changes associated with a pressure drop across a glass orifice. The gas-solid Joule-Thomson effect was examined for 12 different gas-solids systems at a temperature of 302 K, a downstream pressure of 120 kPa, pressure drops across the orifice from 5 to 45 kPa, flow rates from 2 to 14 mmol/s, and aerosol concentrations from 0 to 16 g of powder/mol of gas. The gaseous component included either argon, nitrogen, or carbon dioxide and the particulate component included either Mexican Graphite (26 m/sup 2//g), Nuchar S-C (903 m/sup 2//g), Nuchar S-A (1661 m/sup 2//g), or Super Sorb (3169 m/sup 2//g) carbon powder. A significant enhancement of the Joule-Thomson cooling effect was found for gas-porous carbon systems relative to a pure gas. The dependence of the magnitude of this effect on the gas-gas and gas-solid interactions was predicted from a virial equation of state based on statistical thermodynamic considerations. Gas-solid virial coefficients and their temperature derivatives were used in conjunction with the theoretical model as modified by heat-transport effects to assess the reliability of theory in predicting the experimentally determined gas-solid Joule-Thomson coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.