Abstract

This paper focuses on the dynamic behavior of composite anisogrid lattice conical shells. Lattice composite conical shell consists of composite helical and circumferential ribs and thin outer skin. The free vibration analysis of anisogrid composite lattice conical shell is presented. A smeared method is employed to calculate the variable coefficients of stiffness of conical shell and more close to the realistic applications. The lattice part of conical shell is modeled as a beam, so in addition to the axial loads, ribs endure shear loads and bending moments. The first-order shear deformation shell theory is used to account for the effects of transverse shear deformations and rotary inertia. The current results are verified with 3D finite element model of conical shell by ANSYS Software and those reported in the literature. Some special cases as influences of geometric parameters of lattice part of shell, effects of boundary conditions and circumferential wave number on natural frequencies of the shell are discussed. It was concluded that employment of the smear method could be recommended for determining the coefficients of stiffness of the composite lattice conical shells with outer skin. Also increasing the vertex angle of cone increases the natural frequencies of conical shell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.