Abstract
There is limited research on the effect of silica on the mechanical properties of polystyrene. For this lack of information, this study has focused on the fracture mechanism and mechanical properties of Polystyrene/silica nanocomposite. Transmission electron microscopy showed proper dispersion of nanoparticles in PS matrix in both low and high filler loadings. Scanning electron microscopy, TOM micrography, and non-contact surface profiler were used to study the fracture surface and fracture mechanism characteristics of the nanocomposite. It seems that the debonding mechanism is an important mechanism in toughening of Polystyrene/silica nanocomposites. In addition, mechanical behavior of the samples was investigated. Tensile, flexural, and compressive strength and also impact and plain-strain fracture toughness of nanocomposite samples showed different behaviors in low and high nanoparticle loadings and interestingly, we found an optimum value less than 2% for nanoparticle loading in which we observed the highest improvement in mechanical properties of the nanocomposite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.