Abstract

The secondary organic aerosol (SOA) products of the reaction of benzaldehyde with Cl atoms and with OH radicals in air in the absence of NOx were investigated in an environmental chamber in order to better understand the possible role of organic peroxy radical self-reactions in SOA formation. SOA products and authentic standards were analyzed using mass spectrometry and liquid chromatography, and results show that the yields of benzoyl peroxide (C6H5C(O)OO(O)CC6H5) and benzoic anhydride (C6H5C(O)O(O)CC6H5), two potential products from the gas-phase self-reaction of benzoylperoxy radicals (C6H5C(O)OO·), were less than 0.1%. This is in contrast to results of recent studies that have shown that the gas-phase self-reactions of β-nitrooxyperoxy radicals formed from reactions of isoprene with NO3 radicals form dialkyl peroxides that contribute significantly to gas-phase and SOA products. Such reactions have also been proposed to explain the gas-phase formation of extremely low volatility dimers from autooxidation of terpenes. The results obtained here indicate that, at least for benzoylperoxy radicals, the self-reactions form only benzoyloxy radicals. Analyses of SOA composition and volatility were inconclusive, but it appears that the SOA may consist primarily of oligomers formed through heterogeneous/multiphase reactions possibly involving some combination of phenol, benzaldehyde, benzoic acid, and peroxybenzoic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call