Abstract

Time-resolved schlieren visualization and transonic wind tunnel are used to investigate tip leakage flows (TLFs) over several generic blade tip models. Focus is on the generation and evolution of the over-tip shock waves in the clearance region. A multi-cutoff superposition technique is developed to improve the schlieren system for better visualization. Unsteady flow structures, such as over-tip shock oscillation, shear-layer flapping, and vortex shedding, are revealed by Fourier analysis and dynamic mode decomposition. To predict the generation and decaying of over-tip shocks, a simplified model is proposed by analogizing the shock system to be an N-shaped sawtooth wave. The results show that (1) the proposed model is able to capture the main features of the generation and decaying of over-tip shock waves. The processes of shock generation, decaying, and fading-out are dominated by the mean background flow, the shock state, and the flow fluctuations, respectively. Adding extra coming flow fluctuations can be an efficient way to control the evolution of over-tip shock system. (2) The shock-oscillating frequency is kept the same with the shear-layer flapping, and shock waves with a given oscillating frequency range is constrained to a specific position range. This is termed the “lock-in effect,” which is also observed in TLFs over contoured blade tips. The non-uniformity generation and the nonlinear propagation of shock waves are responsible for this effect. Constrained by this effect, the evolution of over-tip shock waves is separated into four discrete phases. Thus, this effect can be applied for the control of TLFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call