Abstract
Using the thermal building mass as a thermal storage received increasing attention in research during recent years. Due to the large mass of concrete, it offers a large storage capacity and thus a high potential for flexibility. However, passive heat losses during cool down of a thermally activated building influence room temperature and thus limit its flexibility potential. In this contribution a multi-layer activation concept was investigated which thermally decouples the building mass and room air. The study aims to analyse the cool down of a thermally activated building in terms of different charging parameters while considering other heat sources such as solar gains. A dynamic building simulation of a demonstration building was set-up and compared to simulative studies from literature to proof the validity of its dynamic behaviour. In the simulation model the room temperature could be kept above 19 °C between 100 - 190 h. However, when charging the building structure quickly, room temperatures above 24 °C are reached easily. Considering other heat sources such as solar gains, advanced control algorithms are required for efficient operation of the heating system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Sustainable Energy Conference - Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.