Abstract
AbstractThis paper provides an experimental investigation of a kerosene/air burner (the NexGen burner designed on the FAA's proposed ISO 2685 standard), which is used to generate flame/burnt gases impinging on material samples in the field of fire safety. The purpose of this study is to characterize this burner, and experimental means are implemented to better understand the effects of the equivalence ratio on the spatial distribution of the gas temperature (thermocouples), the heat flux (heat flux gauge), and gas emission species. Hence, the measured flame temperature, heat flux, and heat release rate increase up to a critical value of equivalence ratio equal to 1.03. Furthermore, a pyrolysis test was carried out on composite materials and the results of the comparative analysis of carbon‐phenolic, carbon‐BMI, and carbon‐PEKK materials show that carbon‐PEKK had the lowest mass loss, highest back‐face temperature without significant material delamination, and the lowest concentration of gas emission species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.