Abstract

Reactions of the hydrated electron with a wide variety of substrates have been found to exhibit unusually similar activation energies in a manner incompatible with Marcus electron transfer theory. Given the fundamental linear response assumption of Marcus theory, one possible explanation for this apparent failure is that the underlying free energy surfaces governing the reactions are not harmonic; i.e., hydrated electron structural fluctuations exhibit non-Gaussian behavior. In this work, we test this hypothesis by using simulations to calculate the hydrated electron vertical detachment energy distribution. We consider both cavity and noncavity models for the hydrated electron, between which the actual hydrated electron behavior is expected to lie. Our results identify a possible origin for non-Gaussian behavior of the hydrated electron but show that it is not of sufficient magnitude to explain the failure of Marcus theory to describe its reactions. Thus, other explanations must be sought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call