Abstract
The failure mechanisms of Cr2AlC-coated zirconium samples under different mechanical loading conditions have been investigated by combining in-situ bending tests and finite element simulations. The results of interrupted in-situ bending tests reveal that new critical cracks are mainly initiated in the Cr2AlC coating layer, followed by subsequent propagation into the Zr substrate with increasing plastic deformation. The formation of new critical cracks in Cr2AlC material is described using the maximum principal stress criterion. A stress state-dependent damage mechanics model combined with an advanced plasticity model is used to capture the ductile fracture behavior of the Zr substrate. Finite element simulations have been performed to identify the failure properties of coating and substrate materials, leading to the accurate reproduction of experimental fracture behavior.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.