Abstract

The evolution of fracture zone controls the safety of underground coal gasification (UCG) in terms of gas emission and water leakage. In order to understand the fracture propagation in the confining rock of a UCG cavity with various influence factors, this paper implemented a set of numerical models based on different geological and operating conditions. Analysis was implemented on the mechanism of fracture propagation and its evolution characteristics, suggesting that (a) continuum expansion of the cavity leads a near-field fracture circle in confining rock initially, followed by the roof caving and successive propagation of shear band. (b) The key observed influence factors of fracture propagation are the grade of confining rock, overburden pressure, dimension of the cavity and gasifying pressure, the linear relationships between them, and the fracture height. Additionally, the fracture depth in the base board was mainly caused by tensile fracture. (c) A model was proposed based on the evolution of fracture height and depth in roof and base board, respectively. Validation of this model associated with orthogonal tests suggests a good capacity for predicting fracture distribution. This paper has significance in guiding the design of the gasifying operation and safety assessment of UCG cavities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.