Abstract

This study investigated the development of an analytical model using the energy method and Castigliano's second theory to evaluate the equivalent mechanical properties for a bone-inspired cellular structure of a glass fiber-reinforced Polylactic Acid (PLA) composite material. The bone-inspired cellular structure was fabricated using a Fused Deposition Modeling (FDM) 3D printing technique. The fabricated specimens were subjected to compression testing. The digital image correlation technique was employed for obtaining stain and displacement contours in experimental tests. Furthermore, a finite element numerical model was developed to evaluate the mechanical properties of the bone-inspired composite cellular structure. The comparison of the experimental and numerical results with the outcomes of analytical model revealed that the proposed analytical model can correctly determine the mechanical properties of the composite bio-inspired cellular structure. The results showed that by reinforcing the cellular structure with continuous fiber, significantly higher mechanical properties can be obtained. A comprehensive parametric study has also been performed to investigate the effect of geometric parameters on equivalent mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.