Abstract

To enhance the resilience of Nanchang’s water supply system and ensure a dependable emergency water supply. Taking youkou emergency groundwater source field as an example, a flow simulation model was developed through an analysis of the hydrogeological conditions in the study area. Additionally, an optimization model based on the genetic algorithm (GA) technique was constructed and integrated into the flow simulation model. Subsequently, various water supply schemes were simulated with the minimum cost of groundwater extraction as the objective function. The results show that the values of the objective function were reduced by 4.92%, 15.67%, and 42.35% for the three different optimization schemes, namely pumping rates, joint pumping rates and the number of wells, and joint pumping rates, number of wells and well location. Ultimately, the optimal emergency water supply scheme was determined by considering a comprehensive range of factors. These factors encompassed considerations such as the area of the water level depression funnel, the dewatering thickness of the aquifer and the recovery of the groundwater level. The practice shows that the simulation–optimization model could effectively simulate complex groundwater flow systems, meeting the objective function and constraints toachieve the optimal exploitation scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.