Abstract
Heusler compounds have been promising materials for their applications in spintronic, memory and thermoelectric devices. The Mn2CoCr, a full Heusler compound, has been investigated here for its mechanical, thermodynamic and thermoelectric prospective for the first time using full potential linearized augmented plane wave (FP-LAPW) method in support of density functional theory (DFT). The estimation of total energy conferred to Fm-3m structure in ferromagnetic phase, which was in accordance to the others finding. The estimated total magnetic moment was found to be 5.02 (in the units of Bohr magneton), which was in accordance with the Pauling-Slater rule and available data. The electronic structure using generalized gradient approximation (GGA) and modified Becke-Johnson (mBJ) revealed its metallic nature in both the spin configurations. Further, we have calculated the thermodynamic and thermoelectric constants such as specific heat, Debye temperature, Gruneisen constant, thermal conductivity, Seebeck coefficient and power factor. Our predicted value of specific heat at constant volume is 66.6 J/mol.K at 300 K and 0 GPa, which at higher temperature (1000 K) followed Dulong-Petit limit. The power factor was calculated to be 25x1012 Wm-1K−2 at 500 K, demonstrating its suitability in thermoelectric applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.