Abstract
The finite element discontinuous Galerkin method is implemented for solving the Navier-Stokes and Reynolds equations on unstructured adapted grids. A detailed description of the method is given. In problems concerning laminar flow around a cylinder and turbulent flow about a flat plate, solutions with a high order of accuracy are presented. Examples of the calculation of a viscous transonic flow around an isolated airfoil and the subsonic flow around a three-element configuration are considered. These important application problems are solved using the adapted grid technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.