Abstract
In neural electrical stimulation, limiting the charge delivered during a stimulus pulse is essential to avoid nerve tissue damage and to save power. Previous experimental and modeling studies indicated that waveforms such as non-rectangular continuous pulses or rectangular chopped pulse were able to improve stimulation efficiency. The goal of this study is to evaluate if non-rectangular chopped pulses such as quarter sine and ramp are more charge efficient than rectangular chopped pulse. We performed in vivo study on 17 lumbricus terrestris and compared the charge per stimulating phase needed to activate lateral giant fibers (LGF) and medial giant fiber (MGF) using chopped non-rectangular pulses and rectangular pulse, varying stimulation duration parameters. Results indicated that non rectangular chopped pulses activated MGF and LGF with less charge than rectangular chopped pulses. For MGF (respectively LGF), the gain of charge was up to 33.9\% (resp. 17.8\%) using chopped ramp, and up to 22.8\% (resp. 18.1\%) using chopped quarter sine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.