Abstract

Turning hardened steels is more advantageous than cylindrical grinding. However, the machinability of hardened steel is difficult. Therefore, in this experimental study, two different AISI52100 steels with 45 and 50 HRC were machined with varying cutting parameters (feed rate: 0.15, 0.25, 0.35 mm/rev; cutting speed: 140, 155, 170 m/minute; depth of cut: 0.08, 0.12, 0.16 mm) under three different cooling conditions (dry, coolant, and MQL). According to the experimental result the lowest surface roughness, vibration, and energy consumption were obtained in cutting with MQL. With increasing feed rate and depth of cut, vibration, power consumption, and surface roughness increased, while energy consumption decreased because the machining time was shortened. With increasing cutting speed, surface roughness, tool vibration, and energy consumption decreased, while instantaneous power consumption and chuck vibration increased. For the lowest energy consumption, surface roughness, vibration, and highest machine tool performance for the ideal cutting condition, high hardness (50 HRC) using MQL, high cutting speed (145 m/minute), low feed rate (0.1 mm/rev), and high depth of cut (0.3 mm) should be preferred. Thus, 3.88% energy consumption, 58.25% surface roughness value, 10.06% chuck vibration value, and 28.80% tool vibration have decreased according to the average cutting conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.