Abstract

We present the results of an extensive characterization of physical and electrostatic effects influencing the dynamical behavior of a micro-electromechanical (MEMS) accelerometer based on commercial technology. A similar device has been utilized recently to demonstrate the effect of Casimir and other nano-scale interactions on the pull-in distance [Ardito et. al., Microelectron. Reliab., 52 (2012) 271]. In the present work, we focus on the influence of pressure, plate separation, and electric surface potentials on the spectral mechanical response. We finally find evidence for the presence of non-viscous damping due to compressibility of the ambient gas, and demonstrate a strong dependence of the sensitivity on the parameters of the operating point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.