Abstract

This paper is devoted to an investigation of the influences of thermal radiation on an unsteady, mixed, convection boundary layer flow and the heat transfer over a vertical heated permeable stretching sheet embedded in a porous medium. Different models of the nanofluid based on different formulae for the thermal conductivity and the dynamic viscosity and their effects on the fluid flow and the heat transfer characteristics are discussed. Using the similarity transformation, we transform the governing equations into similarity, non-linear, ordinary differential equations which are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. The obtained results are presented graphically, and the physical aspects of the problem are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.