Abstract

Fresnel incoherent correlation holography (FINCH) shows great advantages of coherent-light-source-free, high lateral resolution, no scanning, and easy integration, and has exhibited great potential in recording three-dimensional information of objects. Despite the rapid advances in the resolution of the FINCH system, little attention has been paid to the influence of the effective aperture of the system. Here, the effective aperture of the point spread function (PSF) has been investigated both theoretically and experimentally. It is found that the effective aperture is mainly restricted by the aperture of the charge-coupled device (CCD), the pixel size of the CCD, and the actual aperture of the PSF at different recording distances. It is also found that the optimal spatial resolution exists only for a small range of recording distance, while this range would become smaller as the imaging wavelength gets longer, leading to the result that the optimal spatial resolution is solely determined by the actual aperture of the PSF. By further combining the FINCH system with a microscopy system and optimizing the recording distance, a spatial resolution as high as 0.78 μm at the wavelength of 633 nm has been obtained, enabling a much higher quality imaging of unstained living biological cells compared to the commercial optical microscope. The results of this work may provide some helpful insights into the design of high-resolution FINCH systems and pave the way for their application in biomedical imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.