Abstract
An important research area in physiological and sport sciences is the analysis of the variations of the muscle reaction due to changes in walking speed. In this paper, we investigated the effect of walking speed variations on leg muscle reaction by the analysis of Electromyogram (EMG) signals at different walking inclines. For this purpose, we benefited from fractal theory and sample entropy to analyze how the complexity of EMG signals changes at different walking speeds. According to the results, although fractal theory could not show a clear trend between the variations of the complexity of EMG signals and the variations of the walking speed, however, based on the results, increasing the speed of walking in the case of different inclines is mapped on to the decrement of the sample entropy of EMG signals. Therefore, sample entropy could decode the effect of walking speed on the reaction of leg muscle. This analysis method could be applied to analyze the variations of other physiological signals of humans durin walking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.