Abstract

The use of Line-Start Permanent Magnet Synchronous Motors (LSPMSM) improves the efficiency of conventional direct-on-line electric motor-driven fluid machinery such as pumps and fans. Such motors have increased efficiency compared to induction motors and do not have an excitation winding compared to classical synchronous motors with an excitation winding. However, LSPMSMs have difficulty in starting mechanisms with a high moment of inertia. This problem can be exacerbated by a reduced supply network voltage and a voltage drop on the cable. This article investigates the transients during the startup of an industrial centrifugal pump with a line-start permanent magnet synchronous motor. The simulation results showed that when the voltage on the motor terminals is reduced by 10%, the synchronization is delayed. The use of the cable also leads to a reduction in the voltage at the motor terminals in a steady state, but the time synchronization delay is more significant than that with a corresponding reduction in the supply voltage. The considered simulation example shows that the line-start permanent magnet synchronous motor has no problems with starting the pumping unit, even with a reduced supply voltage. The conclusions of this paper support a wider use of energy-efficient electric motors and can be used when selecting an electric motor to drive a centrifugal pump.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.