Abstract
ABSTRACTLatent heat thermal energy storage (LHTES) has many advantages such as high energy density and phase change at a nearly constant temperature compared with sensible thermal energy storage or chemical energy storage techniques. However, one of its major drawbacks is the low thermal conductivity of phase change materials (PCMs) which impedes the heat transfer efficiency. High thermal conductivity metal foams could be added into the LHTES to enhance the heat transfer speed. Under this case, the investigation of the effects of metal foam porosity and pore size on the melting process is essential for improving the heat storage capability of LHTES. In this article, a pore-scale modeling of melting process in a LHTES unit filled with metal foams is carried out by enthalpy-based multiple-relaxation-time lattice Boltzmann method. The quartet structure generation set is used to generate the morphology of metal foams. In addition, a Compute Unified Device Architecture (CUDA) Fortran code is developed in this work for executing highly parallel computation through graphics processing units. The melting process in the PCMs is investigated in terms of porosity, pore size, nonuniform metal foam, hot wall temperature, and initial subcooled temperature to optimize the design of LHTES filled with metal foams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.