Abstract

Large-scale deployment of Phase Change Materials (PCMs) based Latent Heat Thermal Storage (LHTS) systems is limited by the low charging and discharging rates of the PCMs. In this paper, the effect of the inclination angle of finned enclosures on the development of buoyancy-driven convection flows is investigated. 1-fin and 3-fin rectangular enclosures heated from one side are studied under different inclination angles varied from 0° to 180°. Transient numerical simulations using a control volume approach are carried out to obtain the phase fields, flow fields, temperature distributions, heat transfer rates, as well as thermal energy storages for different configurations. The results showed that the melting time reduces by decreasing the inclination angle of the enclosure due to the intensification of the natural convection flows and increase in the number of vortices in the liquid PCM. The maximum melting time reduction compared to the unfinned vertical enclosure is 72% obtained by the 0°-3-fin enclosure. There are critical liquid fractions beyond which heat transfer rates in the 1-fin enclosure surpass the 3-fin enclosure when the inclination angle of the former is less than the latter one. It was also found that the total heat content of the enclosures is increased by increasing the inclination angle of the enclosure and decreased by adding the number of fins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.