Abstract

In this study, the flap and vortex generator (VG) mechanisms which were employed separately in aircraft were used as integrated first in literature. In this mechanism, the flap motion triggered and activated the VGs when it was needed at low speeds. Thus, this flap mechanism eliminated the unnecessary drag force generation when VGs were not needed. Numerical simulations which were validated with experimental data were employed in the study. In the first step, the flow characteristics formed on the S809 airfoil with 4 different flap angles (β = 30°, 20°, 10°, 0°) were investigated without the VG. Then, those flow structures formed on the S809 airfoil with both flap and VG were examined under the same conditions. According to the results, utilizing flap and VGs together had a positive impact at low wind speeds. Moreover, due to the flap and vortex generator integrated mechanism closed up to be not unnecessary drag formation at high wind speeds, thus those structures increased further to the positive effect with the increasing wind velocity. In terms of energy output, it was shown that this novel idea provided more energy output in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call