Abstract

Due to the permanent damage to structures during earthquakes, soil liquefaction is an important issue in geotechnical earthquake engineering that needs to be investigated. Typical examples of soil liquefaction have been observed in many earthquakes, particularly in Alaska, Niigata (1964), San Fernando (1971), Loma Prieta (1989), Kobe (1995) and Izmit (1999) earthquakes. In this study, liquefaction behavior of uniform sands of different grain sizes was investigated by using the energy-based method. For this purpose, a total of 36 deformation-controlled tests were conducted on water-saturated samples in undrained conditions by using the cyclic simple shear test method and considering the relative density, effective stress and mean grain size parameters that affect the cumulative liquefaction energy. The results showed that as the mean grain size decreases, the liquefaction potential of the sand increases. In addition, with increasing effective stress and relative density, the resistance of sand against liquefaction decreases. Multiple regression analysis was performed on the test results and separate correlations were proposed for the samples with mean grain size of 0.11-0.26 mm and for the ones with 0.45-0.85 mm. The recommended relationships were compared to the ones existing in the literature and compatible results were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.