Abstract

A theoretical study was undertaken to check the influence of interfacial slip on evaporation of a thin liquid film in a microfluidic channel. The disjoining pressure and the capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted. The evaporating thin film region is an extended meniscus beyond the apparent contact line at a liquid/solid interface. Thin film evaporation plays a key role in a highly efficient heat pipe. Slip length was found to affect the heat transfer in the microchannel by altering the thin film geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.