Abstract

ABSTRACTOne-dimensional (1D) nanowire field-effect transistors (FETs) have recently played a major role in sensing applications. Due to charging of the surface functional chemical groups with protonation and deprotonation, the transport properties of these nanowire transistors affect the aqueous environment, altering the electrical double layer (EDL) potential drops and charge distributions in the electrolyte concentration. In this work, we have implemented the simple modified Poisson–Boltzmann (MPB) theory in a 1D silicon nanowire FET, and the effect of the various finite sizes of ions in z:z symmetric electrolyte concentration was investigated. For a given ionic concentration and surface charge, the EDL potential drop, accumulation of charges and the charge distributions of NaCl and CsCl ions were studied. From the MPB model results with the nanowire FET, it was observed that the potential drop of the EDL depends on the size of the ions in the electrolyte. The study of various electrostatic investigations of finite-sized ions was successfully done by implementing the MPB model on a silicon nanowire FET. It can be used in both chemical and biological sensors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call