Abstract
This paper investigates the interaction between cutting tool edge radius and material separation due to ductile fracture based on Atkins’ model of machining. Atkins’ machining model considers the energy needed for material separation in addition to energies required for shearing at the primary shear zone and friction at the secondary shear zone. However, the effect of cutting tool edge radius, which becomes significant at microcutting conditions, was omitted. In this study, the effect of cutting tool edge radius is included in the model and its influence on material separation is investigated. A modification to the solution methodology of Atkins’ machining model is proposed and it is shown that the shear yield stress and the fracture toughness of the work material can be calculated as a function of uncut chip thickness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.