Abstract

The first-order and the second-order chirped factors are imposed on the Airyprime beam, and the analytical expression of the chirped Airyprime beam propagating in free space is derived. The phenomenon that the peak light intensity on observation plane other than initial plane is greater than that on initial plane is defined as the interference enhancement effect, which is caused by the coherent superposition of the chirped Airyprime and the chirped Airy-related modes. The effects of the first-order and the second-order chirped factors on the interference enhancement effect are theoretically investigated, respectively. The first-order chirped factor only affects the transverse coordinates where the maximum light intensity appears. The strength of interference enhancement effect of the chirped Airyprime beam with any negative second-order chirped factor must be stronger than that of the conventional Airyprime beam. However, the improvement of the strength of interference enhancement effect caused by the negative second-order chirped factor is realized at the expense of shortening the position where the maximum light intensity appears and the range of interference enhancement effect. The chirped Airyprime beam is also experimentally generated, and the effects of the first-order and the second-order chirped factors on the interference enhancement effect are experimentally confirmed. This study provides a scheme to improve the strength of interference enhancement effect by controlling the second-order chirped factor. Compared with traditional intensity enhancement methods such as using lens focusing, our scheme is flexible and easy to implement. This research is beneficial to the practical applications such as spatial optical communication and laser processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call