Abstract

In order to investigate the early soot formation process in a diesel spray flame, two-dimensional imaging and spectral measurements of laser-induced emission from soot precursors and soot particles in a transient spray flame achieved in a rapid compression machine (2.8 MPa, 710 K) were conducted. The 3rd harmonic (355 nm) and 4th harmonic (266 nm) Nd: YAG (neodymium-doped yttrium aluminium garnet) laser pulses were used as the light source for laser-induced fluorescence (LIF) from soot precursors and laser-induced incandescence (LII) from soot particles in the spray flame. The two-dimensional imaging covered an area between 30 and 55 mm downstream from the nozzle orifice. The results of two-dimensional imaging showed that strong laser-induced emission excited at 266 nm appears only on the laser incident side of the spray flame, in contrast to an entire cross-sectional distribution of the emission excited at 355 nm, indicating that 266 nm-excited emitters are stronger absorbers and more abundant than 355 nm-excited emitters in the spray flame. The spectral measurements were conducted at three different positions, 35, 45, and 55 mm downstream from the nozzle orifice, along the central axis of the spray, where LIF from soot precursors was observed in a previous two-dimensional imaging study. The spectra measured in upstream positions showed that broad emission peaked at around 400–500 nm, which is attributable to LIF from polycyclic aromatic hydrocarbons (PAHs). The spectra measured in downstream positions appeared very much like grey-body emission from soot particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.