Abstract

Abstract In microend milling, due to the comparable size of the edge radius to chip thickness, chip formation mechanisms are different. Also, the design of microend mills with features of a large shank, taper, and reduced diameter at the cutting edges introduces additional dynamics and faults or errors at the cutting edges. A dynamic microend milling cutting force and vibration model has been developed to investigate the microend milling dynamics caused by the unique mechanisms of chip formation as well as the unique microend mill design and its associated fault system. The chip thickness model has been developed considering the elastic-plastic nature in the ploughing process. A slip-line field modeling approach is taken for a cutting force model development that accounts for variations in the effective rake angle and dead metal cap. The process fault parameters associated with microend mills have been defined and their effects on chip load have been derived. Finally, a dynamic model has been developed considering the effects of both the unique microend mill design and fault system and factors that become significant at high spindle speeds including rotary inertia and gyroscopic moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.