Abstract

Electrically assisted bicycles lead to a change in the driving characteristics compared to conventional bicycles because of the additionally attached masses of motor and battery. In order to describe the resulting interaction of the electric drive components on the driving characteristics, this paper examines simulations of the driving behavior of bicycles with different positions of battery and motor in open- and closed-loop tests. The integration of human driving behavior by control loops allows the evaluation of driving characteristic under more realistic driving conditions compared to the existing studies of the eigenbehavior. The results are analyzed using characteristic values that describe the system behavior in a suitable way. Furthermore, a design of experiments is performed to classify the influence of the presented research results in relation to other system parameters, such as different types of bicycles and different rider postures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.