Abstract

The dielectric recovery of an axially blown arc in an experimental set-up based on a conventional HV circuit breaker was investigated both experimentally and theoretically. As a quenching gas, synthetic air was used. The investigated time range was from 10 µs to 10 ms after current zero (CZ). A fast rise in the dielectric strength during the first 100 µs, followed by a plateau and further rise later was observed. The dependences on the breaking current and pressure were determined. The measured dielectric recovery during the first 100 µs after CZ could be reproduced with good accuracy by computational fluid dynamics simulations. From that it could be deduced that the temperature decay in the axis does not depend sensitively on the pressure. The dielectric recovery during the first 100 µs scales therefore mainly with the filling pressure. The plateau in the breakdown characteristic is due to a hot vapour layer from the still evaporating PTFE nozzle surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call