Abstract
Abstract This paper investigates demand response (DR) potentials of residential air conditioners (AC) under different control strategies using a grey-box room thermal model. The proposed resistance-capacitance (RC) thermal model combines the essential prior knowledge of room thermal characteristics with data-driven techniques. With the aim of saving the optimization time and improving the reasonableness of the search results, undetermined parameters were physically estimated prior to the identification with nonlinear optimization method. A typical residential bedroom in Hong Kong was chosen to test the room thermal model. The root mean square errors (RMSE) between the sampled and predicted data sets for training and validation sessions were 0.25 °C and 0.28 °C respectively. After coupling the room RC thermal model and an empirical AC energy consumption model, we can get AC power reductions under different control strategies during the DR period. The simulation results show that the temperature set-point reset control strategies enable the power consumption to decrease during the DR event, and the peak reduction increases when the set-point is set higher. Besides, the precooling control strategy can help to further reduce the electric power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.