Abstract

The investigation of degradation of seven distinct sets (with a number of individual cells of n $ 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Riso DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. Imaging of device function at different stages of degradation was performed by laser-beam induced current (LBIC) scanning; luminescence imaging, specifically photoluminescence (PLI) and electroluminescence (ELI); as well as by lock-in thermography (LIT). Each of the imaging techniques exhibits its specific advantages with respect to sensing certain degradation features, which will be compared and discussed here in detail. As a consequence, a combination of several imaging techniques yields very conclusive information about the degradation processes controlling device function. The large variety of device architectures in turn enables valuable progress in the proper interpretation of imaging results—hence revealing the benefits of this large scale cooperation in making a step forward in the understanding of organic solar cell aging and its interpretation by state-of-the-art imaging methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call