Abstract
This experiment presents dynamic behaviors between the operating current and the optical beam images of vertical-cavity surface-emitting lasers (VCSELs) with two different aperture diameters of 3 µm (single-mode) and 5 µm (multi-mode). These VCSELs exhibit complex optical phenomena under current injection such as thermal effects, modal competition, carrier distribution, and laser coherence which make the light field distribution difficult to predict. In this report, the DC properties, optical spectrum, and optical images were measured together at different operating currents to accurately evaluate the characteristics of the lasers. Unlike previous works, the variations of the far-field angle were precisely evaluated by the side-mode-suppression ratio (SMSR) of the optical spectrum. In addition to commonly used transform functions such as the Gaussian beam formula, the SMSR provides another tool for the judgment of far-field divergence which could prevent inaccurate analysis. Moreover, the impact of thermal lensing was calculated by the DC measurement and demonstrated by the far-field measurement at high injection current. Through this experiment, the interaction between the injection carrier, thermal lens effect, and current spreading was described as fully as possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.